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Burrows-Wheeler Transform

$ a b a a b a
a $ a b a a b
a a b a $ a b
a b a $ a b a
a b a a b a $
b a $ a b a a
b a a b a $ a

a b a a b a $
T All rotations

Sort

a bb a $ a a
BWT(T)

Last column

Burrows-Wheeler 
Matrix

Burrows M, Wheeler DJ: A block sorting lossless data compression algorithm. 
Digital Equipment Corporation, Palo Alto, CA 1994, Technical Report 124; 1994

Reversible permutation of the characters of a string, used originally for compression

How is it reversible?How is it useful for compression? How is it an index?



Burrows-Wheeler Transform
def!rotations(t):
!!!!"""!Return!list!of!rotations!of!input!string!t!"""
!!!!tt!=!t!*!2
!!!!return![!tt[i:i+len(t)]!for!i!in!xrange(0,!len(t))!]
!
def!bwm(t):
!!!!"""!Return!lexicographically!sorted!list!of!t’s!rotations!"""
!!!!return!sorted(rotations(t))
!
def!bwtViaBwm(t):
!!!!"""!Given!T,!returns!BWT(T)!by!way!of!the!BWM!"""
!!!!return!''.join(map(lambda!x:!x[61],!bwm(t)))

Make list of all rotations

Sort them

Take last column

>>>!bwtViaBwm("Tomorrow_and_tomorrow_and_tomorrow$")
'w$wwdd__nnoooaattTmmmrrrrrrooo__ooo'

>>>!bwtViaBwm("It_was_the_best_of_times_it_was_the_worst_of_times$")
's$esttssfftteww_hhmmbootttt_ii__woeeaaressIi_______'

>>>!bwtViaBwm('in_the_jingle_jangle_morning_Ill_come_following_you$')
'u_gleeeengj_mlhl_nnnnt$nwj__lggIolo_iiiiarfcmylo_oo_'

Python example: http://nbviewer.ipython.org/6798379



Burrows-Wheeler Transform

BWM bears a resemblance to the suffix array

$ a b a a b a
a $ a b a a b
a a b a $ a b
a b a $ a b a
a b a a b a $
b a $ a b a a
b a a b a $ a

6 $
5 a $
2 a a b a $
3 a b a $
0 a b a a b a $
4 b a $
1 b a a b a $

Sort order is the same whether rows are rotations or suffixes

BWM(T) SA(T)



Burrows-Wheeler Transform

In fact, this gives us a new definition / way to construct BWT(T):

$ a b a a b a
a $ a b a a b
a a b a $ a b
a b a $ a b a
a b a a b a $
b a $ a b a a
b a a b a $ a

6 $
5 a $
2 a a b a $
3 a b a $
0 a b a a b a $
4 b a $
1 b a a b a $

BWM(T) SA(T)

“BWT = characters just to the left of the suffixes in the suffix array”

BWT [i] =

⇢
T [SA[i]� 1] if SA[i] > 0
$ if SA[i] = 0



Burrows-Wheeler Transform

$ a b a a b a
a $ a b a a b
a a b a $ a b
a b a $ a b a
a b a a b a $
b a $ a b a a
b a a b a $ a

a b a a b a $
T All rotations

Sort

a bb a $ a a
BWT(T)

Last column

Burrows-Wheeler 
Matrix

How to reverse the BWT?

BWM has a key property called the LF Mapping...

?



Burrows-Wheeler Transform: T-ranking

a b a a b a $

Give each character in T a rank, equal to # times the character occurred 
previously in T.  Call this the T-ranking.

a0 b0 a1 a2 b1 a3

Now let’s re-write the BWM including ranks...

Note: we do not actually write this information in the text / BWM, we  
Are simply including it here to help us track “which” occurrences of each 
character in the BWM correspond to the occurrences in the text.



Burrows-Wheeler Transform

BWM with T-ranking: $ a0 b0 a1 a2 b1 a3
a3 $ a0 b0 a1 a2 b1
a1 a2 b1 a3 $ a0 b0
a2 b1 a3 $ a0 b0 a1
a0 b0 a1 a2 b1 a3 $
b1 a3 $ a0 b0 a1 a2
b0 a1 a2 b1 a3 $ a0

Look at first and last columns, called F and L

F L

And look at just the as

as occur in the same order in F and L.  As we look down columns, in both 

cases we see:   a3, a1, a2, a0



Burrows-Wheeler Transform

BWM with T-ranking: $ a0 b0 a1 a2 b1 a3
a3 $ a0 b0 a1 a2 b1
a1 a2 b1 a3 $ a0 b0
a2 b1 a3 $ a0 b0 a1
a0 b0 a1 a2 b1 a3 $
b1 a3 $ a0 b0 a1 a2
b0 a1 a2 b1 a3 $ a0

F L

Same with bs:   b1, b0



Burrows-Wheeler Transform

$ a b a a b a
a $ a b a a b
a a b a $ a b
a b a $ a b a
a b a a b a $
b a $ a b a a
b a a b a $ a

a b a a b a $
T All rotations

Sort

a bb a $ a a
BWT(T)

Last column

Burrows-Wheeler 
Matrix

Burrows M, Wheeler DJ: A block sorting lossless data compression algorithm. 
Digital Equipment Corporation, Palo Alto, CA 1994, Technical Report 124; 1994

Reversible permutation of the characters of a string, used originally for compression

How is it reversible?How is it useful for compression? How is it an index?



Burrows-Wheeler Transform: LF Mapping

BWM with T-ranking: $ a0 b0 a1 a2 b1 a3
a3 $ a0 b0 a1 a2 b1
a1 a2 b1 a3 $ a0 b0
a2 b1 a3 $ a0 b0 a1
a0 b0 a1 a2 b1 a3 $
b1 a3 $ a0 b0 a1 a2
b0 a1 a2 b1 a3 $ a0

F L

LF Mapping: The ith occurrence of a character c in L and the ith occurrence of c 
in F correspond to the same occurrence in T

However we rank occurrences of c, ranks appear in the same order in F and L



Burrows-Wheeler Transform: LF Mapping

$ a b a a b a3
a3 $ a b a a b1
a1 a b a $ a b0
a2 b a $ a b a1
a0 b a a b a $
b1 a $ a b a a2
b0 a a b a $ a0

Why does the LF Mapping hold?

Why are these 
as in this order 
relative to 
each other?

They’re sorted by 
right-context

$ a b a a b a3
a3 $ a b a a b1
a1 a b a $ a b0
a2 b a $ a b a1
a0 b a a b a $
b1 a $ a b a a2
b0 a a b a $ a0

Why are these 
as in this order 
relative to 
each other?

They’re sorted by 
right-context

Occurrences of c in F are sorted by right-context.  Same for L!

Whatever ranking we give to characters in T, rank orders in F and L will match



Burrows-Wheeler Transform: LF Mapping

BWM with T-ranking:

$ a0 b0 a1 a2 b1 a3
a3 $ a0 b0 a1 a2 b1
a1 a2 b1 a3 $ a0 b0
a2 b1 a3 $ a0 b0 a1
a0 b0 a1 a2 b1 a3 $
b1 a3 $ a0 b0 a1 a2
b0 a1 a2 b1 a3 $ a0

F L

We’d like a different ranking so that for a given character, ranks are in 
ascending order as we look down the F / L columns...



Burrows-Wheeler Transform: LF Mapping

BWM with B-ranking:

$ a3 b1 a1 a2 b0 a0
a0 $ a3 b1 a1 a2 b0
a1 a2 b0 a3 $ a3 b1
a2 b0 a0 $ a3 b1 a1
a3 b1 a1 a2 b0 a0 $
b0 a0 $ a3 b1 a1 a2
b1 a1 a2 b0 a0 $ a3

F L

Ascending rank

F now has very simple structure: a $, a block of as with ascending ranks, a 
block of bs with ascending ranks



Burrows-Wheeler Transform

a0

b0

b1

a1

$
a2

a3

L

Which BWM row begins with b1?

Skip row starting with $ (1 row)
Skip rows starting with a (4 rows)
Skip row starting with b0 (1 row)

$
a0

a1

a2

a3

b0

b1

F

row 6
Answer: row 6



Burrows-Wheeler Transform

Say T has 300 As, 400 Cs, 250 Gs and 700 Ts and $ < A < C < G < T

Skip row starting with $ (1 row)
Skip rows starting with A (300 rows)
Skip rows starting with C (400 rows)
Skip first 100 rows starting with G (100 rows)

Answer: row 1 + 300 + 400 + 100 = row 801

Which BWM row (0-based) begins with G100?  (Ranks are B-ranks.)



Burrows-Wheeler Transform: reversing
Reverse BWT(T) starting at right-hand-side of T and moving left

F L

a0

b0

b1

a1

$

a2

a3

$

a0

a1

a2

a3

b0

b1

Start in first row. F must have $.  L contains 
character just prior to $:  a0

a0: LF Mapping says this is same occurrence of a 

as first a in F.  Jump to row beginning with a0.  L 

contains character just prior to a0: b0.

Repeat for b0, get a2

Repeat for a2, get a1

Repeat for a1, get b1

Repeat for b1, get a3

Repeat for a3, get $, done Reverse of chars we visited = a3 b1 a1 a2 b0 a0 $ = T



Burrows-Wheeler Transform: reversing
Another way to visualize reversing BWT(T):

F L
a0

b0

b1

a1

$
a2

a3

$
a0

a1

a2

a3

b0

b1

F L
a0

b0

b1

a1

$
a2

a3

$
a0

a1

a2

a3

b0

b1

F L
a0

b0

b1

a1

$
a2

a3

$
a0

a1

a2

a3

b0

b1

F L
a0

b0

b1

a1

$
a2

a3

$
a0

a1

a2

a3

b0

b1

F L
a0

b0

b1

a1

$
a2

a3

$
a0

a1

a2

a3

b0

b1

F L
a0

b0

b1

a1

$
a2

a3

$
a0

a1

a2

a3

b0

b1

F L
a0

b0

b1

a1

$
a2

a3

$
a0

a1

a2

a3

b0

b1

a3 b1 a1 a2 b0 a0 $T:



>>>!reverseBwt("w$wwdd__nnoooaattTmmmrrrrrrooo__ooo")
'Tomorrow_and_tomorrow_and_tomorrow$'

>>>!reverseBwt("s$esttssfftteww_hhmmbootttt_ii__woeeaaressIi_______")
'It_was_the_best_of_times_it_was_the_worst_of_times$'

>>>!reverseBwt("u_gleeeengj_mlhl_nnnnt$nwj__lggIolo_iiiiarfcmylo_oo_")
'in_the_jingle_jangle_morning_Ill_come_following_you$'

def;reverseBwt(bw):
;;;;''';Make;T;from;BWT(T);'''
;;;;ranks,;tots;=;rankBwt(bw)
;;;;first;=;firstCol(tots)
;;;;rowi;=;0;#;start;in;first;row
;;;;t;=;'$';#;start;with;rightmost;character
;;;;while;bw[rowi];!=;'$':
;;;;;;;;c;=;bw[rowi]
;;;;;;;;t;=;c;+;t;#;prepend;to;answer
;;;;;;;;#;jump;to;row;that;starts;with;c;of;same;rank
;;;;;;;;rowi;=;first[c][0];+;ranks[rowi]
;;;;return;t

ranks list is m integers 
long!  We’ll fix later.

Burrows-Wheeler Transform: reversing



We’ve seen how BWT is useful for compression:

And how it’s reversible:

Sorts characters by right-context, making a more compressible string

Repeated applications of LF Mapping, recreating T from right to left

How is it used as an index?

Burrows-Wheeler Transform



FM Index

FM Index: an index combining the BWT with a few small auxilliary 
data structures

“FM” supposedly stands for “Full-text Minute-space.” 
(But inventors are named Ferragina and Manzini)

Core of index consists of F and L from BWM:
$ a b a a b a
a $ a b a a b
a a b a $ a b
a b a $ a b a
a b a a b a $
b a $ a b a a
b a a b a $ a
Not stored in index

F L

Paolo Ferragina, and Giovanni Manzini. "Opportunistic data 
structures with applications." Foundations of Computer Science, 
2000. Proceedings. 41st Annual Symposium on. IEEE, 2000.

F can be represented very simply 
(1 integer per alphabet character)

And L is compressible

Potentially very space-economical!



FM Index: querying

Though BWM is related to suffix array, we can’t query it the same way

$ a b a a b a
a $ a b a a b
a a b a $ a b
a b a $ a b a
a b a a b a $
b a $ a b a a
b a a b a $ a

6 $
5 a $
2 a a b a $
3 a b a $
0 a b a a b a $
4 b a $
1 b a a b a $

We don’t have these columns; binary search isn’t possible



FM Index: querying

Look for range of rows of BWM(T) with P as prefix

$ a b a a b a3
a0 $ a b a a b1
a1 a b a $ a b0
a2 b a $ a b a1
a3 b a a b a $
b0 a $ a b a a2
b1 a a b a $ a0

F L

P = aba

Easy to find all the 
rows beginning with 
a, thanks to F’s 
simple structure

Do this for P’s shortest suffix, then extend to successively longer 
suffixes until range becomes empty or we’ve exhausted P

aba



FM Index: querying

$ a b a a b a0
a0 $ a b a a b0
a1 a b a $ a b1
a2 b a $ a b a1
a3 b a a b a $
b0 a $ a b a a2
b1 a a b a $ a3

F L

P = abaaba

We have rows beginning with a, now we seek rows beginning with ba

Look at those rows in L.

$ a b a a b a0
a0 $ a b a a b0
a1 a b a $ a b1
a2 b a $ a b a1
a3 b a a b a $
b0 a $ a b a a2
b1 a a b a $ a3

F L

P = aba

Use LF Mapping.  Let new 
range delimit those bs

Now we have the rows with prefix ba

b0, b1 are bs occuring just to left.



FM Index: querying

$ a b a a b a0
a0 $ a b a a b0
a1 a b a $ a b1
a2 b a $ a b a1
a3 b a a b a $
b0 a $ a b a a2
b1 a a b a $ a3

F L

P = abaaba

We have rows beginning with ba, now we seek rows beginning with aba

Use LF Mapping

$ a b a a b a0
a0 $ a b a a b0
a1 a b a $ a b1
a2 b a $ a b a1
a3 b a a b a $
b0 a $ a b a a2
b1 a a b a $ a3

F L

P = aba

a2, a3 occur just to left.

Now we have the rows with prefix aba



`
FM Index: querying

$ a b a a b a0
a0 $ a b a a b0
a1 a b a $ a b1
a2 b a $ a b a1
a3 b a a b a $
b0 a $ a b a a2
b1 a a b a $ a3

F L

P = aba Now we have the same range, [3, 5), we would 
have got from querying suffix array

[3, 5)

Unlike suffix array, we don’t immediately know where the 
matches are in T...

6 $
5 a $
2 a a b a $
3 a b a $
0 a b a a b a $
4 b a $
1 b a a b a $

[3, 5)

Where are 
these?



FM Index: querying

$ a b a a b a0
a0 $ a b a a b0
a1 a b a $ a b1
a2 b a $ a b a1
a3 b a a b a $
b0 a $ a b a a2
b1 a a b a $ a3

F L

P = ababba

When P does not occur in T, we will eventually fail to find the next character 
in L:

No bs!Rows with ba prefix



FM Index: querying

If we scan characters in the last column, that can be very slow, O(m)

$ a b a a b a3
a0 $ a b a a b1
a1 a b a $ a b0
a2 b a $ a b a1
a3 b a a b a $
b0 a $ a b a a2
b1 a a b a $ a0

F L

P = aba

Scan, looking for bs 

aba



FM Index: lingering issues

$ a b a a b a0
a0 $ a b a a b0
a1 a b a $ a b1
a2 b a $ a b a1
a3 b a a b a $
b0 a $ a b a a2
b1 a a b a $ a3

(1)

(2)
def;reverseBwt(bw):
;;;;""";Make;T;from;BWT(T);"""
;;;;ranks,;tots;=;rankBwt(bw)
;;;;first;=;firstCol(tots)
;;;;rowi;=;0
;;;;t;=;"$"
;;;;while;bw[rowi];!=;'$':
;;;;;;;;c;=;bw[rowi]
;;;;;;;;t;=;c;+;t
;;;;;;;;rowi;=;first[c][0];+;ranks[rowi]
;;;;return;t

m 
integers

(3)

O(m) 
scan

Storing ranks takes too much space

$ a b a a b a0
a0 $ a b a a b0
a1 a b a $ a b1
a2 b a $ a b a1
a3 b a a b a $
b0 a $ a b a a2
b1 a a b a $ a3

Need way to find where matches 
occur in T:

Scanning for preceding 
character is slow

Where?



FM Index: fast rank calculations

Is there an O(1) way to 
determine which bs 
precede the as in our range?

F L

a
b
b
a
$
a
a

L

Idea: pre-calculate # as, 
bs in L up to every row:

Tally

1 0
1 1
1 2
2 2
2 2
3 2
4 2

a b

$ a b a a b a0
a0 $ a b a a b0
a1 a b a $ a b1
a2 b a $ a b a1
a3 b a a b a $
b0 a $ a b a a2
b1 a a b a $ a3

We infer b0 and b1 
appear in L in this range

O(1) time, but requires 
m × | ∑ | integers

$
a
a
a
a
b
b

F
— also referred to as Occ(c, k)

FM Index: fast rank calculations

Is there an O(1) way to 
determine which bs 
precede the as in our range?

F L

a
b
b
a
$
a
a

L

Idea: pre-calculate # as, 
bs in L up to every row:

Tally

1 0
1 1
1 2
2 2
2 2
3 2
4 2

a b

$ a b a a b a0
a0 $ a b a a b0
a1 a b a $ a b1
a2 b a $ a b a1
a3 b a a b a $
b0 a $ a b a a2
b1 a a b a $ a3

We infer b0 and b1 
appear in L in this range

O(1) time, but requires 
m × | ∑ | integers

$
a
a
a
a
b
b

F

Occ(c, k) = # of of c in the first k 
characters of BWT(S), aka the LF 
mapping.



FM Index: fast rank calculations

a
b
b
a
$
a
a

L

Another idea: pre-calculate # as, bs in L up to some rows, e.g. every 5th row.  
Call pre-calculated rows checkpoints.

Tally

1 0

3 2

a b
Lookup here succeeds as usual$

a
a
a
a
b
b

F

Oops: not a checkpoint
But there’s one nearby

To resolve a lookup for character c in non-checkpoint row, scan along L until 
we get to nearest checkpoint.  Use tally at the checkpoint, adjusted for # of cs 
we saw along the way.



FM Index: fast rank calculations

Assuming checkpoints are spaced O(1) 
distance apart, lookups are O(1)

a
b
b
a
a
a
a
b
b
b
a
a
b
b
a
b

L
Tally

482 432

488 439

a b

... ...
What’s my rank?

What’s my rank?

482 + 2 - 1 = 483

439 - 2 - 1 = 436

Checkpoint
as along the way

tally -> rank



FM Index: fast rank calculations

a
b
b
a
$
a
a

L

Another idea: pre-calculate # as, bs in L up to some rows, e.g. every 5th row.  
Call pre-calculated rows checkpoints.

Tally

1 0

3 2

a b
Lookup here succeeds as usual$

a
a
a
a
b
b

F

Oops: not a checkpoint
But there’s one nearby

To resolve a lookup for character c in non-checkpoint row, scan along L until 
we get to nearest checkpoint.  Use tally at the checkpoint, adjusted for # of cs 
we saw along the way.

This can also be accomplished using bit-vector rank operations. We store 
one bit-vector for each character of Σ, placing a 1 where this character 
occurs and a 0 everywhere else:

1 0
0 1
0 1
1 0
0 0
1 0
1 0

the operation rank(x, i) returns the  
total number of 1’s in a bit-vector up to 
(and including) index i.  rank(x,i) is a 

constant-time operation

rank(a,5) = 3

rank(b,5) = 2

rank(a,3) = 2

To  resolve the rank for a given character c at a given index i, we simply issue a 
rank(c,i) query.  This is a practically-fast constant-time operation, but we need to  
keep around  Σ bit-vectors, each of o(m) bits. 



FM Index: a few problems

$ a b a a b a0
a0 $ a b a a b0
a1 a b a $ a b1
a2 b a $ a b a1
a3 b a a b a $
b0 a $ a b a a2
b1 a a b a $ a3

F L(1)

This scan is 
O(m) work

Solved!  At the expense of adding checkpoints (O(m) integers) to index.

With checkpoints it’s O(1)

(2)
def;reverseBwt(bw):
;;;;""";Make;T;from;BWT(T);"""
;;;;ranks,;tots;=;rankBwt(bw)
;;;;first;=;firstCol(tots)
;;;;rowi;=;0
;;;;t;=;"$"
;;;;while;bw[rowi];!=;'$':
;;;;;;;;c;=;bw[rowi]
;;;;;;;;t;=;c;+;t
;;;;;;;;rowi;=;first[c][0];+;ranks[rowi]
;;;;return;t

m integers

Ranking takes too much space

With checkpoints, we greatly reduce 
# integers needed for ranks

But it’s still O(m) space - there’s literature 
on how to improve this space bound



FM Index: a few problems

Not yet solved: (3) $ a b a a b a0
a0 $ a b a a b0
a1 a b a $ a b1
a2 b a $ a b a1
a3 b a a b a $
b0 a $ a b a a2
b1 a a b a $ a3

Need a way to find where 
these occurrences are in T:

$ a b a a b a
a $ a b a a b
a a b a $ a b
a b a $ a b a
a b a a b a $
b a $ a b a a
b a a b a $ a

F L
6 $
5 a $
2 a a b a $
3 a b a $
0 a b a a b a $
4 b a $
1 b a a b a $

If suffix array were part of index, we 
could simply look up the offsets

Offsets: 0, 3

SA

But SA requires 
m integers



FM Index: resolving offsets

Idea: store some, but not all, entries of the suffix array

6

2

0
4

SA
$ a b a a b a
a $ a b a a b
a a b a $ a b
a b a $ a b a
a b a a b a $
b a $ a b a a
b a a b a $ a

F L

Lookup for row 4 succeeds - we kept that entry of SA

Lookup for row 3 fails - we discarded that entry of SA

X



FM Index: resolving offsets
But LF Mapping tells us that the a at the end of row 3 corresponds to...

6

2

0
4

SA
$ a b a a b a
a $ a b a a b
a a b a $ a b
a b a $ a b a
a b a a b a $
b a $ a b a a
b a a b a $ a

F L

And row 2 has a suffix array value = 2

...the a at the begining of row 2

So row 3 has suffix array value =      ????3 = 2 (row 2’s SA val) + 1 (# steps to row 2)

If saved SA values are O(1) positions apart in T, resolving offset is O(1) time



FM Index: problems solved

  At the expense of adding some SA values (O(m) integers) to index

(3)

$ a b a a b a0
a0 $ a b a a b0
a1 a b a $ a b1
a2 b a $ a b a1
a3 b a a b a $
b0 a $ a b a a2
b1 a a b a $ a3

Need a way to find where these 
occurrences are in T:

With SA sample we can do this in 
O(1) time per occurrence

Call this the “SA sample”
Solved!



FM Index: small memory footprint

~ | ∑ | integersFirst column (F):

Components of the FM Index:

Last column (L): m characters
SA sample: m ∙ a integers, where a is fraction of rows kept

Checkpoints: m × | ∑ | ∙ b integers, where b is fraction of 
rows checkpointed

Example: DNA alphabet (2 bits per nucleotide), T = human genome, 
a = 1/32, b = 1/128

First column (F):
Last column (L):

SA sample:
Checkpoints:

16 bytes
2 bits * 3 billion chars = 750 MB
3 billion chars * 4 bytes/char / 32 = ~ 400 MB

3 billion * 4 bytes/char / 128 = ~ 100 MB

Total < 1.5 GB



Computing BWT in O(n) time

• Easy O(n2 log n)-time algorithm to compute the BWT (create 
and sort the BWT matrix explicitly).

• Several direct O(n)-time algorithms for BWT.  
These are space efficient. (Bowtie e.g. uses [1])

• Also can use suffix arrays or trees:

Compute the suffix array, use correspondence between suffix 
array and BWT to output the BWT.

O(n)-time and O(n)-space, but the constants are large.

[1] Kärkkäinen, Juha. "Fast BWT in small space by blockwise suffix sorting." Theoretical 
     Computer Science 387.3 (2007): 249-257.

*slide courtesy of Carl Kingsford



Actual FM-Index Built on Compressed String
Ferragina, Paolo, and Giovanni Manzini. "Opportunistic data structures with applications." 
Foundations of Computer Science, 2000. Proceedings. 41st Annual Symposium on. IEEE, 

2000.

Data structure has “space occupancy that is a function of the entropy of the underlying 
data set”
Stores text T[1,u] in O(Hk(T)) + o(1) bits for k ≥ 0 where Hk(T) is the kith order empirical 
entropy of the text — sub-linear for a compressible string



Using the FM-index in read alignment



Tolerating mismatches via backtracking

Search for : GGTA

It doesn’t exist, but 
GGTG does.

Numbers in the boxes denote 
BWT intervals of search.



Finding alignments via seed & extend
Bowtie makes use of 2 FM-indices, a “forward” and “mirror” 
index.  The forward index is over the reference and the mirror 
index is over the reverse (not reverse-complement) of the 
reference.  This allows searching queries from left-to-right or 
right-to-left.

Use basic seed-and-extend paradigm

Seed is some prefix or suffix of the read of user defined length

Seed contains some maximum user-defined # of mismatches



Seeding strategy (seeds with or without mismatches)

Seed is considered (by default) the first 28bp of the read

Seed is allowed to contain up to 2 (by default) mismatches

After the seed, the subsequent portion of the read is 
“aligned” (allowing an arbitrary number of mismatches, but no 
gaps)

When up to 2 mismatches are allowed, the seed matching falls 
into one of 4 cases:

1. There are no mismatches in the seed
1. There are no mismatches in first 1/2 of seed, and 1 or 2 
   mismatches in



Seeding strategy (seeds with or without mismatches)

When up to 2 mismatches are allowed, the seed matching falls 
into one of 4 cases:

1. There are no mismatches in the seed


2. There are no mismatches in the first 1/2 of the seed, and 1 or 
2 mismatches in the second half.


3. There are no mismatches in the second 1/2 of the seed, and 1 
or 2 mismatches in the first half.


4. There is 1 mismatch in the first 1/2 and one in the second 1/2.

First case is trivial, here’s how Bowtie handles 2-4.



Seeding strategy (seeds with or without mismatches)

Handles case (2) 

Handles case (3) 

Hi-half will have exact match

lo-half will have exact match

Handles case (4) 



Bowtie2 : Building a gap-aware aligner off of Bowtie



Bowtie2 proceeds in 4 phases

First 2  phases 
essentially align 
multiple seeds  
per-read using  

Bowtie1 (ungapped) 
alignment.



Phase 3 (prioritizing seeds)

Each seed (individual BWT row) is “scored” 
based on the width of its range.  A seed, x, 
occurring in a range of width r is assigned a 
weight of w(x) = 1/r2 .

Then, the seeds are selected at random, 
according to these weights, and an alignment 
extension is attempted around each seed.



Phase 4 (aligning around seeds)

There are many important enhancements to the 
“basic” DP, which are used in BT2 and other aligners.  
Some relevant ones are:

Alignments are computed in “bands” around 
the diagonal to avoid filling out irrelevant parts 
of the alignment matrix.

Wide instruction set operations are used to fill 
in multiple cells simultaneously.

Complex scoring functions are used that 
enable e.g. incorporating quality values.



Hierarchical FM-index
Introduced by Kim, Langmead & Salzberg (’15)

Observation: Despite its asymptotic efficiency, search in the  
FM-index can be slow, in part, because the patterns of memory 
access are very incoherent (think about the search procedure).

Idea: Instead of a single global FM-index, build a global FM-
index and a series of local FM-indices, where each local index 
is small enough to fit in CPU cache … recall the cache speed 
advantage.



Cache is $$

https://people.eecs.berkeley.edu/~rcs/research/interactive_latency.html



Search in the Hierarchical FM-index
Idea: Start search in the global FM-index, where it is slow. Once 
a sufficiently-long suffix has been found to restrict the pattern to 
one or a few local indices, continue extending the pattern in the 
local index, where it is fast.



Using a hierarchical FM-index for search

Global search of short suffix 
gives 1 or more potential 
positions

Local index is used to 
“extend” the matches within 
this region, as well 
as to perform local search for 
upstream exons with the 
same local index.



Mapping in the presence of substitutions & indwells

Extension has a 
specialized case for 
single nucleotide 
substitutions (keep 
extending and look for 
subsequent matches)

If more than 1 base 
mismatches, do search 
again in the local index

Multiple local alignments 
stitched together with 
“gap closure” procedure


