# The BWT and FM-index 

## Burrows-Wheeler Transform

Reversible permutation of the characters of a string, used originally for compression


How is it useful for compression?
How is it reversible? How is it an index?

## Burrows-Wheeler Transform

```
def rotations(t):
    """ Return list of rotations of input string t """
    tt = t * 2
```

    return [ tt[i:i+len(t)] for i in xrange(0, len(t)) ]
    ```
```

```
    return [ tt[i:i+len(t)] for i in xrange(0, len(t)) ]
```

```
def bwm( \(t\) ):
    """ Return lexicographically sorted list of t’s rotations """
    return sorted(rotations(t))

\section*{Make list of all rotations}
Sort them
def bwtViaBwm(t):
    """ Given T, returns BWT(T) by way of the BWM """
    return ''.join(map(lambda x: x[-1], bwm(t)))

\section*{Take last column}
```

>>> bwtViaBwm("Tomorrow_and_tomorrow_and_tomorrow$")
'w$wwdd__nnoooaattTmmmrrrrrrooo__ooo'
>>> bwtViaBwm("It_was_the_best_of_times_it_was_the_worst_of_times$")
's$esttssfftteww_hhmmbootttt_ii__woeeaaressIi

```
\(\qquad\)
``` '
>>> bwtViaBwm('in_the_jingle_jangle_morning_Ill_come_following_you$')
u_gleeeengj_mlhl_nnnnt$nwj__lggIolo_iiiiarfcmylo_oo_'
```


## Burrows-Wheeler Transform

BWM bears a resemblance to the suffix array
$\$ \mathrm{ab} a \mathrm{ab} \mathrm{a}$
a \$abaab
a abasab
aba\$aba
abaaba\$
ba\$abaa
babas a

BWM(T)


SA(T)

Sort order is the same whether rows are rotations or suffixes

## Burrows-Wheeler Transform

In fact, this gives us a new definition / way to construct BWT(T):

$$
B W T[i]= \begin{cases}T[S A[i]-1] & \text { if } S A[i]>0 \\ \$ & \text { if } S A[i]=0\end{cases}
$$

"BWT = characters just to the left of the suffixes in the suffix array"


BWM(T)


SA(T)

## Burrows-Wheeler Transform

How to reverse the BWT?


BWM has a key property called the LF Mapping...

## Burrows-Wheeler Transform: T-ranking

Give each character in Ta rank, equal to \# times the character occurred previously in $T$. Call this the $T$-ranking.

## $\mathbf{a}_{0} \mathbf{b}_{0} \mathbf{a}_{1} \mathbf{a}_{2} \mathbf{b}_{1} \mathbf{a}_{3} \boldsymbol{\$}$

Now let's re-write the BWM including ranks...

Note: we do not actually write this information in the text / BWM, we Are simply including it here to help us track "which" occurrences of each character in the BWM correspond to the occurrences in the text.

## Burrows-Wheeler Transform



Look at first and last columns, called $F$ and $L$
And look at just the $\mathbf{a s}$
as occur in the same order in $F$ and $L$. As we look down columns, in both cases we see: $\mathbf{a}_{3}, \mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{0}$

## Burrows-Wheeler Transform



BWM with T-ranking:


Same with $\mathbf{b}_{\mathrm{s}:} \mathbf{b}_{1}, \mathbf{b}_{0}$

## Burrows-Wheeler Transform

Reversible permutation of the characters of a string, used originally for compression


How is it useful for compression?
How is it reversible? How is it an index?

## Burrows-Wheeler Transform: LF Mapping

|  | $F$ |  |  | $L$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| BWM with T-ranking: | $\mathbf{\$}$ | $\mathbf{a}_{0}$ | $\mathbf{b}_{0}$ | $\mathbf{a}_{1}$ | $\mathbf{a}_{2}$ | $\mathbf{b}_{1} \mathbf{a}_{3}$

LF Mapping: The $i^{\text {th }}$ occurrence of a character $c$ in $L$ and the $i^{\text {th }}$ occurrence of $c$ in $F$ correspond to the same occurrence in $T$

However we rank occurrences of $c$, ranks appear in the same order in $F$ and $L$

## Burrows-Wheeler Transform: LF Mapping

Why does the LF Mapping hold?



Occurrences of $c$ in $F$ are sorted by right-context. Same for $L$ !
Whatever ranking we give to characters in $T$, rank orders in $F$ and $L$ will match

## Burrows-Wheeler Transform: LF Mapping

BWM with T-ranking:

$$
\begin{array}{cccccc}
F & & & & L \\
\mathbf{\$} & \mathbf{a}_{0} & \mathbf{b}_{0} & \mathbf{a}_{1} & \mathbf{a}_{2} & \mathbf{b}_{1} \\
\mathbf{a}_{3} & \mathbf{a}_{3} \\
\mathbf{a}_{3} & \mathbf{\$} & \mathbf{a}_{0} & \mathbf{b}_{0} & \mathbf{a}_{1} & \mathbf{a}_{2} \\
\mathbf{b}_{1} \\
\mathbf{a}_{1} & \mathbf{a}_{2} & \mathbf{b}_{1} & \mathbf{a}_{3} & \mathbf{\$} & \mathbf{a}_{0} \\
\mathbf{b}_{0} \\
\mathbf{a}_{2} & \mathbf{b}_{1} & \mathbf{a}_{3} & \mathbf{\$} & \mathbf{a}_{0} & \mathbf{b}_{0} \\
\mathbf{a}_{1} & \mathbf{a}_{0} & \mathbf{b}_{0} & \mathbf{1}_{1} & \mathbf{a}_{2} & \mathbf{b}_{1} \\
\mathbf{a}_{3} & \mathbf{\$} \\
\mathbf{b}_{1} & \mathbf{a}_{3} & \mathbf{\$} & \mathbf{a}_{0} & \mathbf{b}_{0} & \mathbf{a}_{1} \\
\mathbf{a}_{2} \\
\mathbf{b}_{0} & \mathbf{a}_{1} & \mathbf{a}_{2} & \mathbf{b}_{1} & \mathbf{a}_{3} & \mathbf{\$}
\end{array} \mathbf{a}_{0}
$$

We'd like a different ranking so that for a given character, ranks are in ascending order as we look down the F / L columns...

## Burrows-Wheeler Transform: LF Mapping

BWM with B-ranking:


F now has very simple structure: a $\boldsymbol{\$}$, a block of as with ascending ranks, a block of bs with ascending ranks

## Burrows-Wheeler Transform



## Burrows-Wheeler Transform

Say Thas 300 As, 400 Cs, 250 Gs and $700 \mathbf{T s}$ and $\mathbf{\$}<\mathbf{A}<\mathbf{C}<\mathbf{G}<\mathbf{T}$
Which BWM row (0-based) begins with $\mathbf{G}_{100}$ ? (Ranks are B-ranks.)

Skip row starting with $\boldsymbol{\$}$ (1 row)
Skip rows starting with $\mathbf{A}$ (300 rows)
Skip rows starting with C (400 rows)
Skip first 100 rows starting with $\mathbf{G}$ (100 rows)

Answer: row $1+300+400+100=$ row $\mathbf{8 0 1}$

## Burrows-Wheeler Transform: reversing

Reverse BWT(T) starting at right-hand-side of $T$ and moving left
Start in first row. F must have $\mathbf{\$}$. $L$ contains character just prior to $\$$ : $\mathbf{a}_{0}$
ao: LF Mapping says this is same occurrence of a as first $\mathbf{a}$ in $F$. Jump to row beginning with $\mathbf{a}_{0}$. $L$ contains character just prior to $\mathbf{a}_{0}$ : $\mathbf{b}_{0}$.

Repeat for $\mathbf{b}_{0}$, get $\mathbf{a}_{2}$
Repeat for $\mathbf{a}_{2}$, get $\mathbf{a}_{1}$
Repeat for $\mathbf{a}_{1}$, get $\mathbf{b}_{1}$


Repeat for $\mathbf{b}_{1}$, get $\mathbf{a}_{3}$
Repeat for $\mathbf{a}_{3}$, get $\mathbf{\$}$, done
Reverse of chars we visited $=\mathbf{a}_{3} \mathbf{b}_{1} \mathbf{a}_{1} \mathbf{a}_{2} \mathbf{b}_{0} \mathbf{a}_{0} \mathbf{\$}=T$

## Burrows-Wheeler Transform: reversing

Another way to visualize reversing BWT(T):

$T: \mathbf{a}_{3} \mathbf{b}_{1} \mathbf{a}_{1} \mathbf{a}_{2} \mathbf{b}_{0} \mathbf{a}_{0} \boldsymbol{\$}$

## Burrows-Wheeler Transform: reversing

```
>>> reverseBwt("w$wwdd__nnoooaattTmmmrrrrrrooo__ooo")
'Tomorrow_and_tomorrow_and_tomorrow$'
>>> reverseBwt("s$esttssfftteww_hhmmbootttt_ii__woeeaaressIi
```

$\qquad$

``` ")
'It_was_the_best_of_times_it_was_the_worst_of_times$'
>>> reverseBwt("u_gleeeengj_mlhl_nnnnt$nwj__lggIolo_iiiiarfcmylo_oo_")
'in_the_jingle_jangle_morning_Ill_come_following_you$'
```

```
def reverseBwt(bw):
    ''' Make T from BWT(T) '''
ranks list is m integers \longrightarrowranks, tots = rankBwt(bw)
long! We'll fix later.
    first = firstCol(tots)
    rowi = 0 # start in first row
    t = '$' # start with rightmost character
    while bw[rowi] != '$':
        c = bw[rowi]
        t = c + t # prepend to answer
        # jump to row that starts with c of same rank
        rowi = first[c][0] + ranks[rowi]
    return t
```


## Burrows-Wheeler Transform

We've seen how BWT is useful for compression:
Sorts characters by right-context, making a more compressible string
And how it's reversible:
Repeated applications of LF Mapping, recreating $T$ from right to left
How is it used as an index?

## FM Index

FM Index: an index combining the BWT with a few small auxilliary data structures
"FM" supposedly stands for "Full-text Minute-space." (But inventors are named Ferragina and Manzini)

Core of index consists of $F$ and $L$ from BWM:
$F$ can be represented very simply (1 integer per alphabet character)

And $L$ is compressible
Potentially very space-economical!

Paolo Ferragina, and Giovanni Manzini. "Opportunistic data


Not stored in index

## FM Index: querying

Though BWM is related to suffix array, we can't query it the same way


We don't have these columns; binary search isn't possible

## FM Index: querying

Look for range of rows of $\mathrm{BWM}(\mathrm{T})$ with $P$ as prefix
Do this for P's shortest suffix, then extend to successively longer suffixes until range becomes empty or we've exhausted $P$

$$
P=\mathbf{a b a}
$$



## FM Index: querying

We have rows beginning with $\mathbf{a}$, now we seek rows beginning with ba

$$
P=\mathbf{a b a}
$$



Now we have the rows with prefix ba

## FM Index: querying

We have rows beginning with ba, now we seek rows beginning with aba

$$
P=\mathbf{a b a}
$$

$$
P=\mathbf{a b a}
$$

Now we have the rows with prefix aba

## FM Index: querying

$P=\mathbf{a b a}$
Now we have the same range, $[3,5)$, we would have got from querying suffix array


Unlike suffix array, we don't immediately know where the matches are in T...

## FM Index: querying

When $P$ does not occur in $T$, we will eventually fail to find the next character in $L$ :

$$
P=\mathbf{b} \mathbf{b} \mathbf{a}
$$

## FM Index: querying

If we scan characters in the last column, that can be very slow, $O(m)$

\[

\]

## FM Index: lingering issues

(2) Storing ranks takes too much space
(1) Scanning for preceding character is slow

| \$ a lb a a lb $\mathbf{a}_{0}$ |  |
| :---: | :---: |
| $a_{0}$ | \$ a lb a a $\mathbf{b}_{0}$ |
| $\mathbf{a}_{1}$ | a b a \$ a $\mathbf{b}_{1}$ |
| $\mathrm{a}_{2}$ | b a \$ a lb $\mathbf{a}_{1}$ |
|  | b a a b a \$ |
|  | a \$ a b a $\mathbf{a}_{2}$ |
|  | a a b a \$ $\mathbf{a}_{3}$ |

```
                def reverseBwt(bw):
                """" Make T from BWT(T) """
                ranks, tots = rankBwt(bw)
            first = firstCol(tots)
            rowi = 0
            t = "$"
            while bw[rowi] != '$':
                c = bw[rowi]
            t = c + t
                        rowi = first[c][0] + ranks[rowi]
            return t
```

(3) Need way to find where matches occur in $T$ :

|  | $\begin{aligned} & \mathbf{\$} \text { a b a a b } \mathbf{a}_{0} \\ & \mathbf{a}_{0} \$ \mathrm{a} \text { b a a } \mathbf{b}_{0} \\ & \mathbf{a}_{1} \text { a b a } \$ \text { a } \mathbf{b}_{1} \end{aligned}$ |
| :---: | :---: |
| Where? | $\begin{array}{ll\|lll} \hline \mathbf{a}_{2} & \mathrm{~b} & \mathrm{a} & \mathrm{a} & \mathbf{a}_{1} \\ \mathbf{a}_{3} & \mathrm{l} & \mathrm{a} & \mathrm{a} & \mathrm{lb} \\ \hline \end{array}$ |
|  | $\mathbf{b}_{0} \text { a } \$ \mathrm{alb} a \mathbf{a}_{2}$ |

## FM Index：fast rank calculations

Is there an $\mathrm{O}(1)$ way to determine which bs precede the as in our range？

|  |
| :---: |
| 010 |
|  |
|  |
|  |
| ขひっすర』 |

## Occ（ $c, k)=\#$ of of $c$ in the first $k$ characters of BWT（S），aka the LF mapping．



Tally－also referred to as Occ（c，k）

Idea：pre－calculate \＃as， bs in $L$ up to every row：
$\mathbf{a} \mathbf{b}$

| 1 | 0 |
| :--- | :--- |
| 1 | 1 |
| 1 | 1 |
| 1 | 2 |
| 2 | 2 |
| 2 | 2 |
| 3 | 2 |
| 4 | 2 |

We infer $\mathbf{b}_{0}$ and $\mathbf{b}_{1}$ appear in $L$ in this range

O（1）time，but requires $m \times|\Sigma|$ integers

## FM Index: fast rank calculations

Another idea: pre-calculate \# as, $\mathbf{b}$ s in $L$ up to some rows, e.g. every $5^{\text {th }}$ row. Call pre-calculated rows checkpoints.


To resolve a lookup for character c in non-checkpoint row, scan along $L$ until we get to nearest checkpoint. Use tally at the checkpoint, adjusted for \# of cs we saw along the way.

## FM Index: fast rank calculations

What's my rank?

$L \quad \mathbf{a}^{\text {Tally }} \quad \mathbf{b}$

$$
439-2-1=436
$$

Assuming checkpoints are spaced $O(1)$ distance apart, lookups are O(1)

## FM Index: fast rank calculations

This can also be accomplished using bit-vector rank operations. We store one bit-vector for each character of $\Sigma$, placing a 1 where this character occurs and a 0 everywhere else:


To resolve the rank for a given character $\mathbf{c}$ at a given index $\mathbf{i}$, we simply issue a $\operatorname{rank}(\mathbf{c}, \mathbf{i})$ query. This is a practically-fast constant-time operation, but we need to keep around $\Sigma$ bit-vectors, each of o(m) bits.

## FM Index: a few problems

Solved! At the expense of adding checkpoints $(O(m)$ integers $)$ to index.
(1)


With checkpoints it's O(1)
(2) Ranking takes too much space

```
def reverseBwt(bw):
""" Make T from BWT(T) """
ranks, tots = rankBwt(bw)
first = firstCol(tots)
rowi \(=0\)
t = "\$"
while bw[rowi] != '\$':
\(c=b w[r o w i]\)
\(t=c+t\)
rowi = first[c][0] + ranks[rowi]
return t
```

With checkpoints, we greatly reduce \# integers needed for ranks

But it's still O(m) space - there's literature on how to improve this space bound

## FM Index: a few problems

Not yet solved:
(3) Need a way to find where these occurrences are in $T$ :

If suffix array were part of index, we could simply look up the offsets



But SA requires $m$ integers

## FM Index: resolving offsets

Idea: store some, but not all, entries of the suffix array


Lookup for row 4 succeeds - we kept that entry of SA
Lookup for row 3 fails - we discarded that entry of SA

## FM Index: resolving offsets

But LF Mapping tells us that the a at the end of row 3 corresponds to...
...the $\mathbf{a}$ at the begining of row 2


And row 2 has a suffix array value $=2$
So row 3 has suffix array value $=3=2$ (row 2's SA val) +1 (\# steps to row 2 )
If saved $S A$ values are $\mathrm{O}(1)$ positions apart in $T$, resolving offset is $\mathrm{O}(1)$ time

## FM Index: problems solved

At the expense of adding some SA values ( $O(m)$ integers) to index Call this the"SA sample"
(3) Need a way to find where these occurrences are in $T$ :

|  |
| :---: |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |

With SA sample we can do this in $O(1)$ time per occurrence

## FM Index: small memory footprint

Components of the FM Index:
First column (F): $\quad \sim|\Sigma|$ integers
Last column (L): $\quad m$ characters
SA sample: $\quad m \cdot a$ integers, where $a$ is fraction of rows kept
Checkpoints: $\quad m \times|\Sigma| \cdot b$ integers, where $b$ is fraction of rows checkpointed

Example: DNA alphabet (2 bits per nucleotide), $T=$ human genome, $a=1 / 32, b=1 / 128$

First column (F): 16 bytes
Last column (L): $\quad 2$ bits * 3 billion chars $=750 \mathrm{MB}$
SA sample: $\quad 3$ billion chars * 4 bytes/char / $32=\sim 400 \mathrm{MB}$
Checkpoints: $\quad 3$ billion * 4 bytes/char / 128 = ~ 100 MB
Total $<1.5$ GB

## Computing BWT in O(n) time

- Easy $O\left(n^{2} \log n\right)$-time algorithm to compute the BWT (create and sort the BWT matrix explicitly).
- Several direct $O(n)$-time algorithms for BWT. These are space efficient. (Bowtie e.g. uses [I])
- Also can use suffix arrays or trees:

Compute the suffix array, use correspondence between suffix array and BWT to output the BWT.
$O(n)$-time and $O(n)$-space, but the constants are large.
[1] Kärkkäinen, Juha. "Fast BWT in small space by blockwise suffix sorting." Theoretical Computer Science 387.3 (2007): 249-257.

## Actual FM-Index Built on Compressed String

Ferragina, Paolo, and Giovanni Manzini. "Opportunistic data structures with applications."
Foundations of Computer Science, 2000. Proceedings. 41st Annual Symposium on. IEEE, 2000.

Data structure has "space occupancy that is a function of the entropy of the underlying data set"

Stores text $T[1, u]$ in $O\left(H_{k}(T)\right)+o(1)$ bits for $k \geq 0$ where $H_{k}(T)$ is the kith order empirical entropy of the text - sub-linear for a compressible string

Theorem 1 Let $Z$ denote the output of the algorithm BW_RLX on input $T[1, u]$. The number of occurrences of $a$ pattern $P[1, p]$ in $T[1, u]$ can be computed in $O(p)$ time on a RAM. The space occupancy is $|Z|+O\left(\frac{u}{\log u} \log \log u\right)$ bits in the worst case.

Theorem 2 A text $T[1, u]$ can be preprocessed in $O(u)$ time so that all the occ occurrences of a pattern $P[1, p]$ in $T$ can be listed in $O\left(p+o c c \log ^{2} u\right)$ time on a RAM. The space occupancy is bounded by $5 H_{k}(T)+O\left(\frac{\log \log u}{\log u}\right)$ bits per input symbol in the worst case, for any fixed $k \geq 0$.

Theorem 3 A text $T[1, u]$ can be indexed so that all the occ occurrences of a pattern $P[1, p]$ in $T$ can be listed in $O\left(p+o c c \log ^{\epsilon} u\right)$ time on a RAM. The space occupancy is $O\left(H_{k}(T)+\frac{\log \log u}{\log ^{g} u}\right)$ bits per input symbol in the worst case, for any fixed $k \geq 0$.

## Using the FM-index in read alignment


' Ultrafast and memory-efficient alignment of short |'
DNA sequences to the human genome
I
I Ben Langmead ${ }^{\text {M }}$, Cole Trapnell, Mihai Pop \& Steven L SalzbergI
I Genome Biology 10, Article number: R25 (2009) Download Citation $\underline{\text { | }}$

## Tolerating mismatches via backtracking

## Search for : GGTA

It doesn't exist, but GGTG does.

Numbers in the boxes denote BWT intervals of search.

Exact


## Finding alignments via seed \& extend

Bowtie makes use of 2 FM-indices, a "forward" and "mirror" index. The forward index is over the reference and the mirror index is over the reverse (not reverse-complement) of the reference. This allows searching queries from left-to-right or right-to-left.

Use basic seed-and-extend paradigm
Seed is some prefix or suffix of the read of user defined length
Seed contains some maximum user-defined \# of mismatches

## Seeding strategy (seeds with or without mismatches)

Seed is considered (by default) the first 28bp of the read
Seed is allowed to contain up to 2 (by default) mismatches
After the seed, the subsequent portion of the read is "aligned" (allowing an arbitrary number of mismatches, but no gaps)

When up to 2 mismatches are allowed, the seed matching falls into one of 4 cases:

1. There are no mismatches in the seed
2. There are no mismatches in first $1 / 2$ of seed, and 1 or 2 mismatches in

## Seeding strategy (seeds with or without mismatches)

When up to 2 mismatches are allowed, the seed matching falls into one of 4 cases:

1. There are no mismatches in the seed
2. There are no mismatches in the first 1/2 of the seed, and 1 or

2 mismatches in the second half.
3. There are no mismatches in the second $1 / 2$ of the seed, and 1 or 2 mismatches in the first half.
4. There is 1 mismatch in the first $1 / 2$ and one in the second $1 / 2$.

First case is trivial, here's how Bowtie handles 2-4.

## Seeding strategy (seeds with or without mismatches)

Handles case (2) $\longrightarrow$ Phase 1


Hi-half will have exact match


Handles case (3)


Phase 2

| acga... | $\ldots \mathrm{gccg}$ |
| :---: | :---: |
| L |  |

Forward index
Mirror index

Handles case (4)


## Bowtie2 : Building a gap-aware aligner off of Bowtie



## Bowtie2 proceeds in 4 phases

Supplementary Figure 1

First 2 phases essentially align multiple seeds per-read using Bowtie1 (ungapped) alignment.

Read Read ('everse comolement)
CCAGTAGCTCTCAGCCTTATTTTACCCAGGCCTGTA TACAGGCCTGGGTAAAATAAGGCTGAGAGCTACTG
Policy: extract 16 nt seed every 10 nt

## Sceds

$+, 0:$ CCAGTAGCTCTCAGCC $\quad-0:$ TACAGGCCTGGGTAAA
$+, 10:$ TCAGCCTTATTTTACC $\quad$, 10: GGTAAAATAAGGCTGA
$+, 20:$ TTTACCCAGGCCTGTA $\quad, 20:$ GGCTGAGAGCTACTGG

## Seeds

,+ 0 : CCAGTAGCTCTCAGCC
+, 10: TCAGCCTTATTTTACC
+, 20: TTTACCCAGGCCTGTA
-, 0: TACAGGCCTGGGTAAA
,- 10 : GGTAAAATAAGGCTGA

- 20: GGCTGAGAGCTACTGG

Seed alignments (as Burrows-Wheeler ranges)
( $[211,212],[212,214]\}$
( $[653,654],[651,653])$
[684, 635] )
( )
(1)
( [624, 625] \}


## Exiension cancidates

BW row: 684: chr12:1955
BW row: 624: chr2:462 BW row:211: chr4:762 BW row: 213: chr12:1935 BW row: 652: chr12:1945


SAM alignments
$\begin{array}{lllll}\text { r1 } & 0 & \text { chr12 } & 1936 \\ & 36 \mathrm{M} & *\end{array}$
$\stackrel{36 M}{\bullet}$ *CAGTAGCTCTCAGCCTTATTTTACCCAGGCCTGTA
$\rightarrow$ CCAGTAGCTCTCAGCCTTATTTTACCCAGGCCTGTA IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII AS:i:0 XS:i:-2 XN:i:0 $\begin{array}{lll}\text { XM:i:0 } & \text { X0:i:0 } & \text { XG:i:0 } \\ \text { NM:i:0 } & \text { MD:Z:36 } & Y T: Z: U U\end{array}$ NM:i:0 MD:Z:36 YT:Z:UU

## Phase 3 (prioritizing seeds)



Each seed (individual BWT row) is "scored" based on the width of its range. A seed, $x$, occurring in a range of width $r$ is assigned a weight of $w(x)=1 / r^{2}$.

Then, the seeds are selected at random, according to these weights, and an alignment extension is attempted around each seed.

## Phase 4 (aligning around seeds)



There are many important enhancements to the "basic" DP, which are used in BT2 and other aligners. Some relevant ones are:

Alignments are computed in "bands" around the diagonal to avoid filling out irrelevant parts of the alignment matrix.

Wide instruction set operations are used to fill in multiple cells simultaneously.

Complex scoring functions are used that enable e.g. incorporating quality values.

## Hierarchical FM-index

Introduced by Kim, Langmead \& Salzberg ('15)

Observation: Despite its asymptotic efficiency, search in the FM-index can be slow, in part, because the patterns of memory access are very incoherent (think about the search procedure).

Idea: Instead of a single global FM-index, build a global FMindex and a series of local FM-indices, where each local index is small enough to fit in CPU cache ... recall the cache speed advantage.

## Cache is \$\$

| ■ | 1ns | ■ | Main memory reference: 100ns |  | Send 2,000 bytes over commodity network: 62ns |  | Read 1,000,000 bytes sequentially from SSD: $62,000 \mathrm{~ns} \approx 62 \mu \mathrm{~s}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ■ | L1 cache reference: 1 ns |  | $1,000 \mathrm{~ns} \approx 1 \mu \mathrm{~s}$ | ■ | SSD random read: 16,000ns $\approx 16 \mu \mathrm{~s}$ | ■ | Disk seek: 3,000,000ns $\approx$ 3ms |
| ■na\| | Branch mispredict: 3ns |  | Compress 1 KB wth Zippy: $2,000 \mathrm{~ns} \approx 2 \mu \mathrm{~s}$ | I | Read 1,000,000 bytes sequentially from memory: | $\square$ | Read 1,000,000 bytes |
| - | L2 cache reference: 4 ns |  | $10,000 \mathrm{~ns} \approx 10 \mu \mathrm{~s}=\square$ |  | $4,000 \mathrm{~ns} \approx 4 \mu \mathrm{~s}$ |  | sequentially from disk: 947,000ns $\approx 947 \mu \mathrm{~s}$ |
|  | Mutex lock/unlock: 17ns |  |  | $\square$ | Round trip in same datacenter: 500,000ns $\approx$ $500 \mu \mathrm{~s}$ |  | Packet roundtrip CA to Netherlands: 150,000,000ns |
| - +1- | $100 \mathrm{~ns}=\square$ |  |  |  |  | Q | $\approx 150 \mathrm{~ms}$ |
| - 1 |  |  |  | + | $1,000,000 \mathrm{~ns}=1 \mathrm{~ms}=\square$ |  |  |
| $\square$ |  |  |  | P- |  | P P- |  |
| P |  |  |  | - |  | - |  |
| - +1 |  |  |  | - |  | - - |  |
| - |  |  |  | - |  | T-HD |  |
|  |  |  |  | - + - |  |  |  |

## Search in the Hierarchical FM-index

Idea: Start search in the global FM-index, where it is slow. Once a sufficiently-long suffix has been found to restrict the pattern to one or a few local indices, continue extending the pattern in the local index, where it is fast.

Hierarchical Indexing


## Using a hierarchical FM-index for search

Global search of short suffix gives 1 or more potential positions

Local index is used to "extend" the matches within this region, as well as to perform local search for upstream exons with the same local index.



Local FM index for chr22 from 24,417,280 to 24,482,559



## Mapping in the presence of substitutions \& indwells

Extension has a specialized case for single nucleotide substitutions (keep extending and look for subsequent matches)

If more than 1 base mismatches, do search again in the local index

Multiple local alignments stitched together with "gap closure" procedure
$\begin{array}{l:l}\text { Exon } & \leftarrow \text { Local Search }\end{array}$
$\begin{array}{ll:l}- \text { Intron } & \leftarrow \text { Extension }\end{array}$

- Gap Closure

a

b

c


